

Encuentro Nacional

Transferencia desde la Ciencia y la Experiencia 24 de abril

MESA DE DEBATE 2: HIDROLOGÍA, DEGRADACIÓN Y EROSIÓN DEL SUELO

TOM VANWALLEGHEM

Universidad de Córdoba

ESTELA NADAL ROMERO

Instituto Pirenaico de Ecología (IPE-CSIC)

JAVIER CASALÍ SARASIBAR

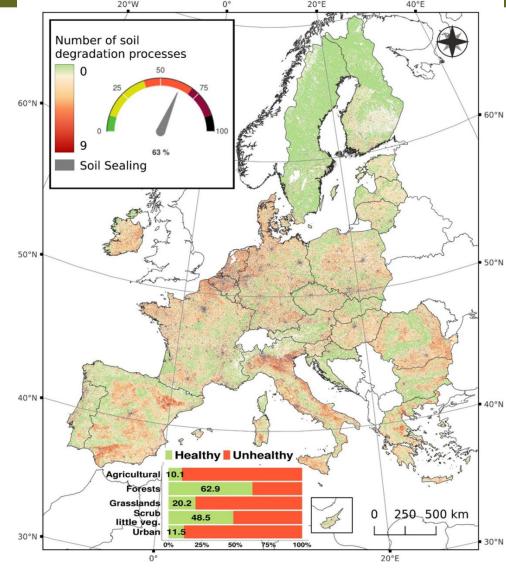
Universidad Pública de Navarra

MARILUZ GUILLÉN CLIMENT

Agresta S. Coop.

ANTONIO MANUEL CONDE LÓPEZ

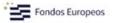
Universidad de Córdoba



La erosión de suelo como principal amenaza a los suelos en la UE

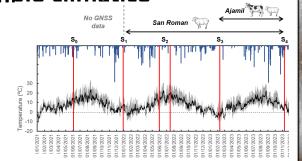
- 60-70 % suelos no saludables
- 50 000 millones coste de degradación
- 24 % de suelos con tasas de erosión insostenibles

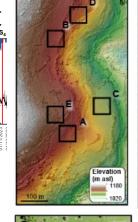
https://esdac.jrc.ec.europa.eu/esdacviewer/euso-dashboard/

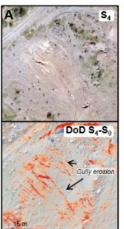

Una política europea que favorece la salud del suelo

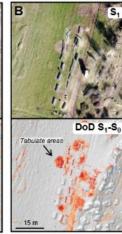
- Visión para conseguir suelos saludables en 2050 (EU Soil Strategy)
- Política Agraria Común (PAC) 2023-2027:
 más de 40 000 miliones € para mejorar la calidad del suelo
- Ley de restauración de la naturaleza (adoptado 17 de junio de 2024)
- Directiva de monitorización y resiliencia del suelo (en negociación, 2025?)

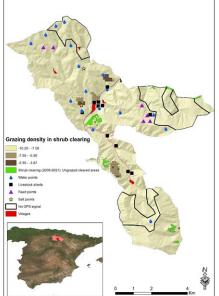
Gestionar el paisaje para mejorar la salud del suelo

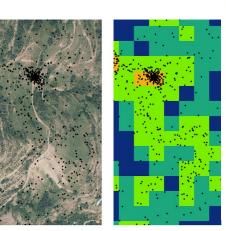

LIFE MIDMACC. Adaptando la media montaña al cambio climático

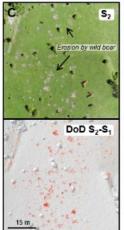

Desbroce de matorrales y ganadería extensiva.

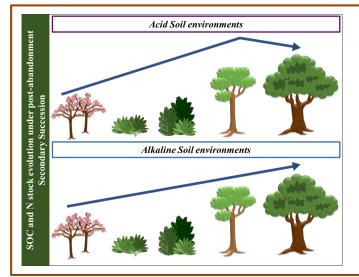

Procesos de erosión

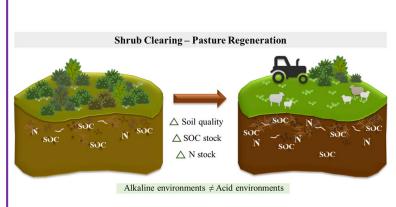



http://life-midmacc.eu/@midmacc



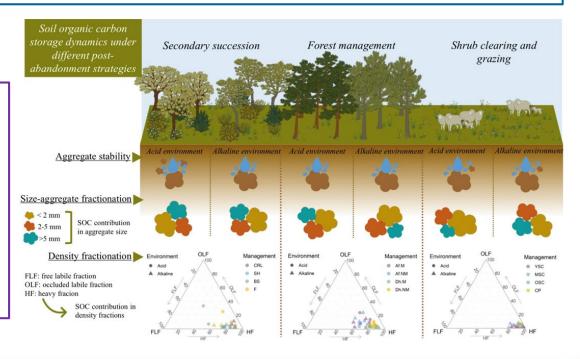






La revegetación natural tras el abandono puede contribuir a mejorar la calidad del suelo, aumentando progresivamente el SOC.

<u>La gestión forestal</u> incrementa los stocks de SOC.


Repoblaciones con coníferas: contribución significativa de FLF (no se traduce en estabilización de SOC a largo plazo).

El desbroce de matorrales y la ganadería extensiva aumentan la acumulación de SOC y mejoran la calidad del suelo.

Pastos: mayor proporción de material recalcitrante, lo que sugiere que las especies de pastos contribuyen a la estabilización del SOC.

Cortijos López et al., 2023 (Catena), 2024 (Forest), 2024 (LDD)

Olivo

Almendro

Viñedo

Mango

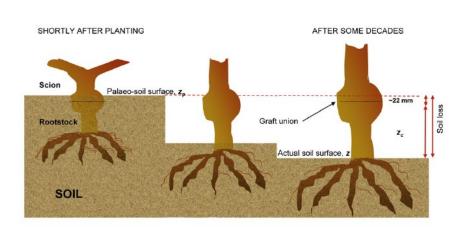
Persimón

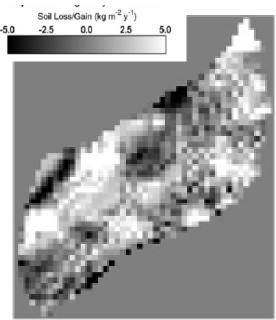
Aguacate

Pistacho

Nadal-Romero & García-Ruiz, 2025. REC

Miles de hectáreas de zonas sobrepastoreadas y sometidas al fuego dando lugar a la práctica desaparición del suelo Cercado, "abandono", reforestación

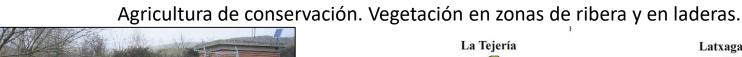


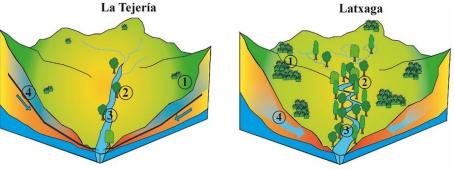

"Si no sabemos qué problemas hay, dónde se dan y con qué intensidad, qué factores los determinan ..., no podremos plantear medidas de control con eficaces"

Erosión en viñedos (similitudes con olivares, almendrales ...)

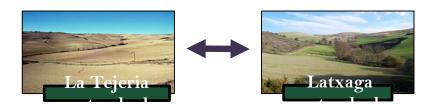
Encespedado. Limitación de uso por pendiente. Laboreo "racional".

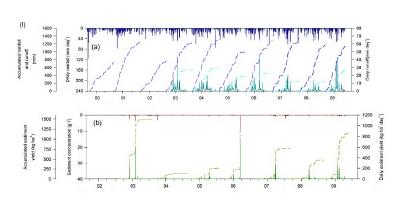
Casalí et al, 2009.. CATENA 78: 12-19

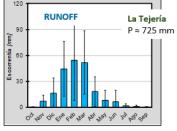


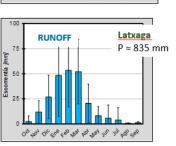


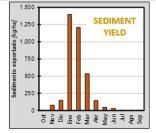
Exportación de sedimentos en zonas cerealista de secano

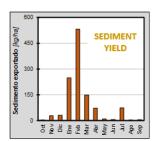







Hernández-García et al., 2020. Science of The Total Environment, Volume 733, 2020, 139177

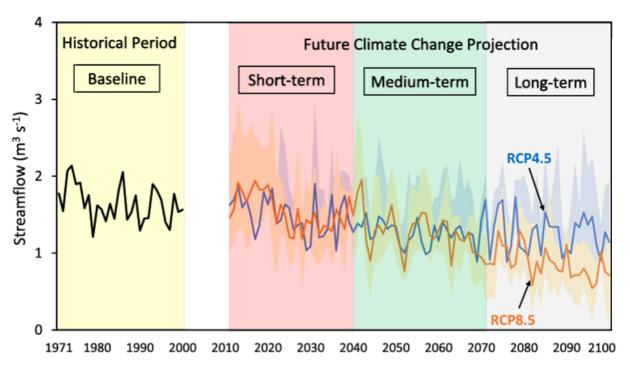



http://cuencasagrarias.navarra.es/

Variable	La Tejería	Latxaga	Oskotz Principal	Oskotz Forestal	Landazuria
	(winter cereals)	(winter cereals)	(grass land, livestock, forest)	(forest)	(irrigated)
Average anual rainfall	725 mm	835 mm	1200 mm	1200 mm	425±114 mm
Average anual runoff	212 ± 74 mm	236 ± 73 mm	618 ± 171 mm	550 ± 150 mm	102±30 mm
Average anual suspended sediment concentration	182 mg/L	38 mg/L	12 mg/L	12 mg/L	30 mg/L (median)
Average anual exported sediment	4,3 ± 3,7 Mg/ha	1,4 ± 1,7 Mg/ha	1,2 ± 0,9 Mg/ha	0,7 ± 0,6 Mg/ha	0,3 ± 0,5 Mg/ha

Erosión por cárcavas efímeras

Evitar suelos desnudos. Agricultura de conservación



Modelos de simulación como método de estimación de medidas correctoras

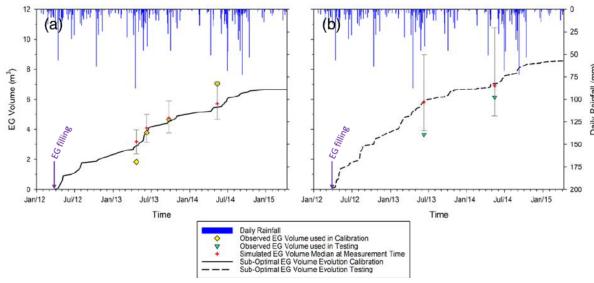
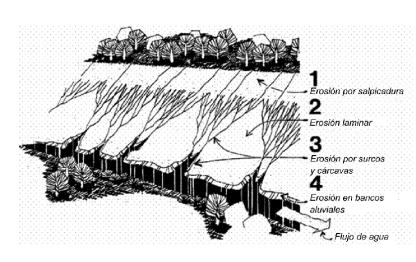


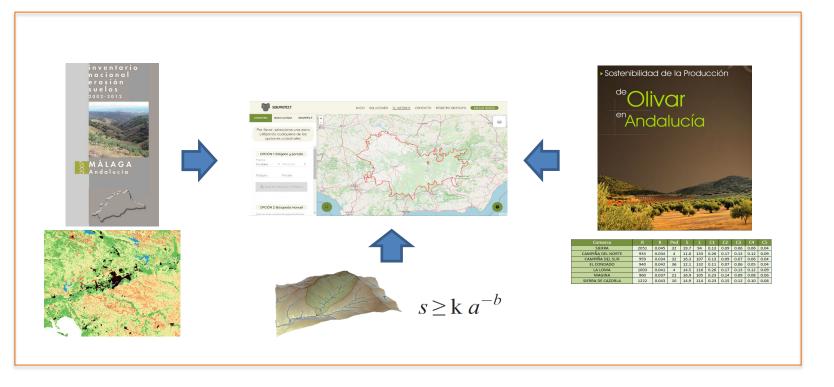
FIGURE 7 Calibration (solid line) and testing (dashed line) simulated EG volume for the sub-optimal selection (NSE = 0.73) for I3 (a) and B6 (b) gullies. Red crosses represent the median simulated EG volume at each measurement time (t1-5) for the simulations (n = 3,881), and error bars represent the uncertainty around simulated EG volume (95% confidence interval); this range depicts the prediction uncertainty envelope [Color figure can be viewed at wileyonlinelibrary.com]

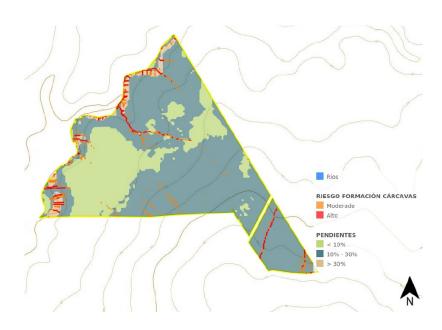
Oduor et al.,. 2023. "Effects of climate change on streamflow and nitrate. Agricultural Water Management, vol. 285, 108378

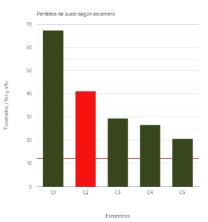
Luquin et al., 2021. Earth Surf. Process and Landforms 46:1909–1925.



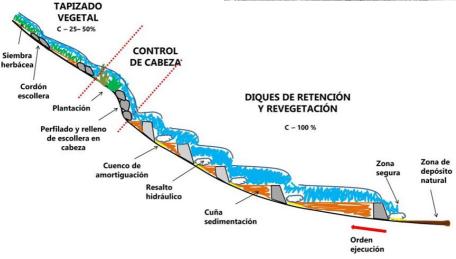
Retos y experiencias para la mejora del ecosistema del olivar







Pérdidas en función del manejo de la cubierta vegetal o inerte											
Pérdidas estimadas	Escenarios	Límite									
	C1	C2	C3	C4	C5	admisible					
Toneladas de suelo por hectárea al año	67,33	40,98	29,27	26,35	20,49	12,00					
Milímetros de suelo al año	5,52	3,36	2,40	2,16	1,68	0,98					
Kg de carbono orgánico en suelo por hectárea al año	698,89	425,37	425,37	273,51	212,69						



Retos y experiencias para la mejora del ecosistema del olivar

Gómez, J.A. et al. (2019)

#SueloSanoSueloVivo

#SueloSanoSueloVivo

#SueloSanoSueloVivo

